

A physics informed response model for calculation of flammable cloud volume based on computational fluid dynamics

Sávio Vianna
University of Campinas
10th of May 2023 - P2SAC Conference - Purdue University

Sávio S.V. Vianna

University of Campinas - Unicamp

- PhD University of Cambridge, UK
- MSc. Coppe UFRJ
- Chemical Engineering UFRJ
- DnV Det Norske Veritas
- Associate Professor University of Campinas Unicamp
- Editor Journal of Loss Prevention in the Process Industries (CFD applied to process safety)
- Editor Brazilian Journal of Chemical Engineering (Transport phenomena)

Motivation

- Things can go wrong
- Flammable cloud volumes depends on many factors
- Some of these factors are stochastic
- The volume of flammable clouds is not easy to predict
- And yet, how can we calculate reliable cloud volumes?

Contents

- Introduction
- Methodology
- Results
- Closing remarks

Introduction

Flammable cloud volume depends on:

- Material released
- Wind speed
- Wind direction
- Leak rate
- Geometry

$$V_f = f(\rho, u, \dot{m}, L)$$

Methodology

- Reduce the number of variables via dimensional analysis
- Run simulations to verify whether there is a relation between the non-dimensional numbers
- Development of a model based on the kinetic theory of gases
- Validate the model
- Case study

$$V_f = f(\rho, u, \dot{m}, L)$$

Buckingham theorem

$$\pi_1 = \frac{\dot{m}}{\rho Q} \qquad \qquad \pi_1 = \frac{u^{1.5} \rho^{1.5}}{\dot{m}^{1.5}}$$

Is there any relation between the non-dimensional leak rate and the non-di

$$R = \frac{m}{\rho Q}$$

$$\hat{V} = \frac{u^{1.5} \rho^{1.5} V_f}{\dot{m}^{1.5}}$$

- ~ 240 CFD simulations
- RANS
- K-epsilon model
- FLACS
- Neutral Pasquill stability class

Leak \ Wind	Up	Down	East	West	North	South
North	10 leak					
	rates	rates	rates	rates	rates	rates
South	10 leak					
	rates	rates	rates	rates	rates	rates
East	10 leak					
	rates	rates	rates	rates	rates	rates
West	10 leak					
	rates	rates	rates	rates	rates	rates

Results Modelling

- Gas particles density is not high
- Gas particles are in constant random movement
- Gas particles do not interact with each other
- Collisions are elastic
- Particle velocities along all directions are equivalent

$$\Omega(v_x, v_y, v_z) = f(v_x)f(v_y)f(v_z)$$

$$\Omega(v_x, v_y, v_z) = f(v_x)f(v_y)f(v_z)$$
 Unicaming
$$\ln \Omega(v_x, v_y, v_z) = \ln f(v_x) + \ln f(v_y) + \ln f(v_z)$$

Differentiation for v_x leads to:

$$\left(\frac{\partial \ln \Omega(\nu)}{\partial \nu_{x}}\right)_{\nu_{y},\nu_{z}} = \frac{d \ln f(\nu_{x})}{d\nu_{x}}$$

After minor manipulation, integration leads to:

$$f(v_j) = \omega \exp\left(-\frac{\gamma v_j^2}{2}\right) \qquad \frac{\dot{m}\Delta t}{\rho}$$

Integration over the sample of velocities

$$V = \frac{\dot{m}\Delta t}{\rho}\omega \exp\left[-\frac{\gamma\left(\frac{\dot{m}}{\rho A}\right)^{2}}{2}\right]$$

Results Modelling

$$V = \frac{\dot{m}\Delta t}{\rho}\omega \exp\left[-\frac{\gamma\left(\frac{\dot{m}}{\rho A}\right)^{2}}{2}\right]$$

$$A = \frac{\omega \Delta T}{\rho} \qquad B = \frac{\gamma}{2(\rho A)^2}$$

$$V = A\dot{m} \exp\left(-B\dot{m}^2\right) \stackrel{50}{>} \stackrel{7}{\sim} \frac{10}{0}$$

$$\hat{V} = AR \exp\left(-BR^2\right) \stackrel{10}{0} \stackrel{10}{0} \stackrel{0.02}{0} \stackrel{0.04}{0} \stackrel{0.06}{0} \stackrel{0.08}{0} \stackrel{0.08}{0}$$

Comparison with CFD suggests the following:

$$\hat{V} = A^m R^n \exp\left(-BR^{0.8}\right)$$

where m = n = 1.5

Results - Validation

- A new set of CFD simulation was used in the validation process
- Overall good agreement was observed

Results - Engineering case

Petrobras - FPSO

Results - Applications

Closing remarks

Acknowledgments

